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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. Langevin Monte Carlo (LMC) and its con-
strained variant, projected LMC (P-LMC), are fundamental
algorithms in the sampling literature for generating samples from
a target probability distribution π ∝ exp (−u) by accessing only
the gradient of the potential function u. While tight convergence
analyses for these methods have recently been established for
convex potentials on bounded domains, their behavior for general
potentials remains less understood. This paper extends the
analysis of P-LMC for general smooth potentials, both convex and
non-convex. We derive exponential convergence rates with respect
to multiple distance metrics, including total variation distance,
Hellinger divergence, Rényi divergence, and χ2-divergence. Our
approach leverages techniques from differential privacy, specifi-
cally the contractivity of Gaussian kernels over bounded domains.

I. INTRODUCTION

Sampling from a target distribution π using Markov chain
Monte Carlo is a fundamental problem in statistics and ma-
chine learning [1], and it often amounts to discretizing a
diffusion process with π being its stationary measure. When
π corresponds to the Gibbs measure π ∝ e−u, where u is
the potential function, a popular candidate for such diffusion
process is the following stochastic differential equation known
as the Langevin dynamics (LD).

dXt = −∇u(Xt)dt+
√
2dBt, (1)

where {Bt}t≥0 is Brownian motion in Rd. If Xt ∼ ρt, then
ρt satisfies the Fokker-Planck equation [2]:

∂ρt
∂t

= ∇ ·
(
ρt ∇ log

ρt
π

)
, (2)

where ∇· represents the divergence. It is evident from (2) that
when ρt = π, the term ∂ρt

∂t becomes zero, implying that π is
the stationary distribution of the Langevin dynamics.

Discretizing this dynamics, using the Euler–Maruyama
method [3], results in the following Markov chain known as
Langevin Monte Carlo (LMC)

Xk+1 = Xk − η∇u(Xk) +
√
2ηZk, (3)

where Zk ∼ N (0, Id) are independent, and η > 0 is the step
size (viewed as the discretization parameter). The stationary
distribution of LMC algorithm, denoted by πη , converges to
π as η approaches zero, thus we refer to πη as the biased
target distribution. We note that LMC is also referred to as

the Unadjusted Langevin Algorithm [2], Langevin MCMC [4],
and Overdamped Langevin Algorithm [5].

Since the impact of the discretization bias is rather well-
understood in the literature [2, 6–12], the tight convergence
analysis of (1) typically boils down to finding a tight conver-
gence rate for the LMC. This is the approach adopted in this
paper as well.

LMC has been extensively studied in statistical physics [13],
statistics [14], and machine learning [1]. However, despite
being studied for several decades in multiple communities, the
tight convergence rate for a variant of LMC has only recently
been determined by Altschuler and Talwar [15]. Specifically,
they consider the LMC for target distributions that have finite-
sum potentials u(x) =

∑n
i=1 ui(x) which are supported on a

compact and convex set K ⊂ Rd, leading to the following
definition.

Definition 1. For a compact and convex set K ⊂ Rd, potential
u =

∑n
i=1 ui, batch size b ≤ n, step size η > 0, and

initialization X0 ∈ K, the projected Langevin Monte Carlo
(P-LMC) is defined as

Xk+1 = ΠK

[
ψBk

(Xk) +
√
2ηZk

]
, (4)

where ΠK is the Euclidean projection onto K, ψBk
(x) :=

x− 1
b

∑
i∈Bk

η∇ui(x), Bk is a uniform random batch of size
b , and Zk ∼ N (0, Id) is an independent noise.

It was shown in [15] that the mixing time of P-LMC with
convex potentials is Θ(D

2

η log 1
ε ), that is the distribution of

Xk is within ε total variation (TV) distance of πη after k ≥
D2

η log 1
ε iterations, where D is the diameter of K. Their proof

relies on a novel concept called shifted divergence [16–18],
which has also been utilized to achieve state-of-the-art privacy
analyses for iterative algorithms [19, 20]. This concept, while
being powerful, is only applicable to convex potentials.

A. Contribution

In this work, we establish exponential convergence rates
for P-LMC with smooth potential functions. Compared to
existing results (see Table I), our contributions offer two key
advantages: (1) the derived bounds apply to a broader class of
potentials, requiring only smoothness, whether the potentials
are convex or non-convex, and (2) the results hold for a



wide range of f -divergences, including KL divergence, Rényi
divergence, TV distance, and Hellinger distance.

Similar to [15], our proof technique builds on a novel
privacy analysis framework known as privacy amplification by
iteration [21–23]. This framework leverages the contractivity
of Markov kernels with respect to a certain f -divergence that
underlies differential privacy. Despite the apparent similarity,
our proposed approach differs fundamentally from existing
techniques in the privacy literature. Privacy analyses typically
assess the closeness of two Markov processes that are ini-
tialized identically, whereas convergence analyses, including
ours, examine the rate at which a single Markov chain pro-
duces indistinguishable outputs when initialized differently.
This subtle but important distinction between privacy and
sampling necessitates fundamentally different applications of
conceptually similar techniques.

B. Related Works
The convergence analysis (or equivalently, the mixing time

analysis) of Langevin dynamics (1) and its discretized variants
has been extensively studied in the literature under various
assumptions. Here, we briefly review the works most closely
related to P-LMC and defer a more comprehensive review of
the literature to the extended version [24].

The study of the mixing time of P-LMC has seen significant
progress since the seminal works of Bubeck et al. [25]. Despite
this progress, tight mixing bounds (to either π or πη) remained
unresolved until very recently. Altschuler and Talwar [15]
provided a complete characterization of the mixing time for
P-LMC under the assumptions of convexity and smoothness.
A detailed comparison of our results with theirs is provided
in Section IV.

In the non-convex setting, convergence results of LMC
(unprojected) have been established for various metrics, in-
cluding the Wasserstein distances [26, 27], KL divergence
[2], and Fisher information [28], χ2-divergence [29], Rényi
divergence [29], and f -divergence [30]. Several other conver-
gence results have been established under assumptions such
as Log-Sobolev inequality (LSI) [29], Poincaré inequality [2],
Latała–Oleszkiewicz inequality [6], Modified Log-Sobolev
inequality [31], and weak Poincaré inequality (WPI) [32].

The closest work to ours is [33] which analyzed the con-
vergence rate of P-LMC in 1-Wasserstein distance with the
non-convex potentials satisfying some mild conditions (such
as Lipschitzness and sub-Gaussianity). More specifically, they
established convergence to π by coupling the continuous-time
P-LMC with the discrete-time P-LMC. In contrast, our anal-
ysis relies exclusively on the discretized version, eliminating
the need to transition between continuous and discrete time.

Table I summarizes convergence results for various al-
gorithms derived from Langevin dynamics under different
assumptions and metrics. The complete table can be found
in Appendix D in the longer version [24].

C. Notation and Definitions
Random variables are represented by uppercase letters, such

as X . We use calligraphic letters to denote sets, except for

TABLE I
SUMMARY OF CONVERGENCE RESULTS FOR LANGEVIN DYNAMICS AND

RELATED ALGORITHMS, WITH ’TYPE’ INDICATING CONVERGENCE TO THE
TARGET OR BIASED DISTRIBUTION.

Ref Algo Convex Other Assumptions Metric Type
[32] LD No WPI, s-Hölder Rényi to target

[26] LMC No LSI, M -smooth,
dissipative W2 to target

[32] LMC No WPI, s-Hölder Rényi to target

[30] LMC No M -smooth, f -Sobolev
Inequality f -divergence to biased

[33] P-LMC No M -smooth, uniform
sub-Gaussian gradients W1 to target

[25] P-LMC Yes M -smooth, Lipschitz TV to target
[15] P-LMC Yes M -smooth TV to biased
Ours P-LMC No M -smooth f -divergence to biased

N , which represents the Gaussian distribution. We define
S to denote {x ∈ Rd : ∥x∥2 ≤ dA,A > 0} and [n]
to denote {1, 2, . . . , n}. The set of all distributions on W
is denoted by P(W). Given γ ≥ 1, the Eγ-divergence
between two distributions µ and ν on X is defined as
Eγ(µ∥ν) := supA∈X [µ(A)−γν(A)]. Note that Eγ-divergence
reduces to TV distance when γ = 1. A differentiable function
f : Rd → R is M -smooth if ∇f is M -Lipschitz. A Markov
kernel K : K → P(W) is specified by a collection of
distributions {K(x) ∈ P(W) : x ∈ K}. Given a Markov
kernel K : K → P(K) and µ ∈ P(K), we denote by Kµ
the push-forward of µ under K, i.e.,

Kµ =

∫
K
µ(dx)K(x).

Given a convex function f with f(1) = 0, we define
Df (µ∥ν) :=

∫
dνf(dµ/dν). In the sequel, we use KL

divergence KL(µ∥ν), χ2-divergence χ2(µ∥ν), total varia-
tion distance TV(µ, ν), and Hα(µ∥ν) Hellinger divergence
of order α > 1, that are instances of f -divergence with
f(t) = t log t, f(t) = (t − 1)2, f(t) = 1

2 |t − 1|, and
f(t) = tα−1

α−1 , respectively. All f -divergences satisfy the data
processing inequality (DPI): Df (Kµ∥Kν) ≤ Df (µ∥ν), for
any Markov kernel K. This inequality can be improved for
some kernels K, that is there may exist ηf ≤ 1 such that
Df (Kµ∥Kν) ≤ ηfDf (µ∥ν) for any measures µ and ν. The
smallest such ηf is typically referred to as the contraction
coefficient of K under f -divergence and denoted by ηf (K).
If ηf (K) < 1, we say K satisfies strong DPI (SDPI) for
f -divergence. For comprehensive exposition of contraction
coefficients of Markov kernels, we refer interested readers to
[22, 23, 34, 35].

All proofs and more comprehensive literature review are
included in the longer version [24].

II. Eγ -MIXING TIME

In this section, we aim to establish an exponential conver-
gence rate for P-LMC under Eγ-divergence for any γ ≥ 1.
We will then translate this result to a larger family of f -
divergences using properties of Eγ-divergence.



Xk ∼ µk

X ′
k ∼ πη Ψk +

×

ΠK
Xk+1 ∼ µk+1

X ′
k+1 ∼ πη

Zk

√
2η

Fig. 1. Visualization of one P-LMC iteration, consisting of three Markov
kernels that together satisfy SDPI, ensuring exponential convergence.

Note that ψB , the update rule of P-LMC (see Definition 1),
can be expressed as a composition of three Markov kernels:

Kk = ΠK ◦ K
√
2η

G ◦Ψk, (5)

where
• Ψk : K → P(K), given by Ψk :=

∑
B⊂[n] P(Bk =

B)ψB . Here, we use a slight abuse of notation, treating
a deterministic function as a Markov kernel.

• K
√
2η

G : S → P(Rd) is a S-constrained Gaussian kernel
[22], defined as K

√
2η

G (y) = N (y, 2ηId) for all y ∈ S.
• ΠK(·) denotes the projection onto the convex set K.
In particular, if we employ sampling without replacement as

the method of choosing the batch Bk with size |Bk| = b, we
have: Ψk =

∑
B⊂[n]

1

(nb)
ψB . Thus, the update rule of P-LMC

can be written as:

Kt =
1(
n
b

) ∑
B⊂[n]:|B|=b

ΠK ◦ K
√
2η

G ◦ ψB . (6)

Such representation of each iteration of P-LMC in terms
of several Markov kernels enables us to precisely measure
the impact of kth iteration on the distance between Xk’s
distribution and πη . To formalize this statement, let µk denote
the distribution of Xk. Note that

Eγ(µk+1∥πη) = Eγ(Kkµk∥Kkπ
η).

Thus, applying SDPI for Eγ-divergence, we obtain

Eγ(µk+1∥πη) ≤ ηγ(Kk)Eγ(µk∥πη), (7)

where ηγ(Kk) is the contraction coefficient of Kk under
Eγ-divergence. The following proposition shows that S-
constrained Gaussian kernel, satisfies SDPI.

Proposition 1 ([22, Proposition 1]). Let S ⊂ Rd be a compact
set with diameter dia(S). If Kσ

G is the S-constrained Gaussian
kernel, then

ηγ(K
σ
G) = θγ

(dia(S)
σ

)
,

where

θγ(r) := Q
( log γ

r
− r

2

)
− γQ

( log γ
r

+
r

2

)
, (8)

and Q(t) = (2π)
−1
2
∫∞
t
e−u2/2du.

We are now in order to state our main result of this section.

Theorem 1. Let Xk ∼ µk denote the output of the kth iteration
of P-LMC. Then, we have

max{Eγ(µk∥πη),Eγ(π
η∥µk)} ≤

[
θγ

(D(ηM + 1)√
2η

)]k

.

Proof sketch: We provide an overview of the proof only
for Eγ(µk∥πη). The proof for Eγ(π

η∥µk) is similar.
Consider two initializations for P-LMC: X0 ∼ µ0, with µ0

being an arbitrary distribution supported on K, and X ′
0 ∼ πη .

Let Xk and X ′
k be the corresponding outputs of P-LMC after

k iterations. Since πη is the stationary distribution, we have
X ′

k ∼ πη . Thus, in light of the representation (6) and the
convexity of (µ, ν) 7→ Eγ(µ∥ν), we have

Eγ(µk+1∥πη) ≤ β
∑

B⊂[n]:
|B|=b

Eγ((K
√
2η

G ◦ ψB)µk

∥∥(K√
2η

G ◦ ψB)π
η),

where β := 1

(nb)
.

It can be verified that K
√
2η

G ◦ ψB is an SB-constrained
Gaussian kernel with SB := ψB(K). It is straightforward to
show that

dia(SB) ≤ D(ηM + 1), (9)

(see Proposition 2 in the longer version [24] for a proof.)
Thus, invoking Proposition 1 and monotonicity of r 7→ θγ(r)
for γ ≥ 1, we arrive at

Eγ(µk+1∥πη) ≤ θγ

(D(ηM + 1)

σ

)
Eγ(µk∥πη).

Applying this argument for k times yields the result.
This theorem establishes that the Eγ-divergence between µk

and πη decays exponentially, even for non-convex potentials,
provided they satisfy a smoothness condition. Notably, this
smoothness assumption is considerably less restrictive than
those required by existing results on the convergence analysis
of P-LMC in the non-convex setting (see Table I for a
summary of such assumptions).

This theorem can naturally be translated into an argument
about mixing time. Borrowing the recently defined notion of
Eγ-mixing-time [36], we define

Tmix,Eγ (ε) = min{k ∈ N : Eγ(µk∥πη) ≤ ε}, (10)

for γ ≥ 1 and ε > 0. The following is an immediate corollary
of Theorem 1 that gives an upper bound for Eγ-mixing-time.

Corollary 1. For any γ ≥ 1 and 0 < ε < 1, the Eγ-mixing-
time of P-LMC satisfies

Tmix,Eγ
(ε) ≤ log ε

log

(
θγ

(
D(ηM+1)√

2η

)) ,
where θγ was defined in (8).

It is worth making a remark on the Eγ-mixing-time. Zaman-
looy et al. [36] established that Tmix,Eγ

(0) <∞ for finite-state
Markov chains, deviating from traditional notions of mixing



time, i.e., those based on TV distance, KL divergence, Rényi
divergence, or χ2-divergence. However, Corollary 1, which
provides the first analysis of the Eγ-mixing-time for Markov
chains with a continuous state space, does not exhibit this
property. Whether their result extends to the continuous-state
setting remains an open question.

We conclude this section with another immediate corollary
of Theorem 1, which establishes the convergence rate and
mixing time in terms of TV distance. Note that the TV-mixing
time is defined analogously to (10), with the Eγ-divergence
replaced by the TV distance (i.e., setting γ = 1).

Corollary 2. Let Xk ∼ µk denote the output of the kth

iteration of P-LMC. Then, we have

TV(µk, π
η) ≤

[
1− 2Q

(D(ηM + 1)

2
√
2η

)]k

. (11)

Moreover, for 0 < ε < 1, the TV-mixing time satisfies

Tmix,TV(ε) ≤
log ε

log
(
1− 2Q

(D(ηM+1)
2
√
2η

)) . (12)

III. FROM Eγ -MIXING TIME TO f -DIVERGENCE-MIXING
TIME

In the previous section, we studied a convergence analysis
for P-LMC, in terms of how fast the Eγ-divergence between µk

and πη decays and provided the corresponding mixing time.
It is well established that a broad class of f -divergences

can be expressed in terms of Eγ-divergence. Specifically, for
twice-differentiable f , we have [37, Corollary 3.7]

Df (µ∥ν) =
∫ ∞

1

[
f ′′(γ)Eγ(µ∥ν) +

1

γ3
f ′′(1/γ)Eγ(ν∥µ)

]
dγ.

(13)

By combining Theorem 1 with this elegant representation,
we directly obtain the convergence rate of P-LMC for an
extensive family of divergences. This universality significantly
enhances the applicability of our results, making them a
powerful tool for analyzing a wide range of divergences.

Theorem 2. Let f : (0,∞) → R be a twice-differentiable
convex function with continuous second derivative f ′′ and
f(1) = 0. Take r = D(ηM+1)√

2η
and s = e

r2

2 +r. Let Xk ∼ µk

denote the output of the kth iteration of P-LMC. If there exist
constants L and N such that for all t ≥ s:

t−2f ′′(t−1) ≤ L, (14)

and

t1−Kf ′′(t) ≤ N, for some K ∈ N, (15)

then, for any k ≥ K, we have

Df (µk∥πη) ≤
r
(
L+NeKr2

)
k − 1

(2π)
−k
2

+

[
f ′(s)− f ′(s−1)

s
+ f(s−1)

][
Q
(−r
2

)]k
.

Proof sketch: Note that the integral representation of f -
divergence in (13) yields

Df (µk∥πη)

=

∫ ∞

1

[
f ′′(γ)Eγ(µk∥πη) +

1

γ3
f ′′(1/γ)Eγ(π

η∥µk)
]
dγ.

Applying Theorem 1, we can write

Df (µk∥πη) ≤
∫ s

1

[
f ′′(γ) + γ−3f ′′(γ−1)

] [
θγ (r)

]k
dγ︸ ︷︷ ︸

A

+

∫ ∞

s

f ′′(γ)
[
θγ (r)

]k
dγ︸ ︷︷ ︸

B

+

∫ ∞

s

γ−3f ′′(γ−1)
[
θγ (r)

]k
dγ︸ ︷︷ ︸

C

We now provide upper bounds for each of these integrals.
We begin by A. First, it holds that θγ(r) ≤ Q

(
log γ
r − r

2

)
.

The monotonicity of γ 7→ Q
(
log γ
r − r

2

)
for all γ ≥ 1 implies

that

A ≤
[
Q

(
−r
2

)]k ∫ s

1

[
f ′′(γ) + γ−3f ′′(γ−1)

]
dγ. (16)

An application of integration by parts yields

A ≤
[
Q

(
−r
2

)]k [
f ′(s)− s−1f ′(s−1) + f(s−1)

]
.

Next, we bound B and C. Notice that Q(x) < p(x)
x for x > 0,

where p(x) denotes the probability density function of the
normal distribution. By leveraging this inequality and applying
the trivial bound mentioned for θγ(r), we obtain

B ≤
∫ ∞

s

γK−1γ1−Kf ′′(γ)

[p( log γ
r − r

2

)
log γ
r − r

2

]k
dγ,

and

C ≤
∫ ∞

s

γ−3f ′′(γ−1)

[p( log γ
r − r

2

)
log γ
r − r

2

]k
dγ.

Following (14) and (15), we have

B ≤ N

∫ ∞

s

γK−1

[p( log γ
r − r

2

)
log γ
r − r

2

]k
dγ,

and

C ≤ L

∫ ∞

s

γ−1

[p( log γ
r − r

2

)
log γ
r − r

2

]k
dγ,

from which, and a simple application of algebraic simplifica-
tion, we arrive at

B ≤ NreKr2(2π)
−k
2

(
1

k − 1

)
, (17)

and

C ≤ Lr(2π)
−k
2

(
1

k − 1

)
. (18)

Combining (16), (17), and (18) gives the desired result.



This theorem establishes an exponential convergence rate
for P-LMC across a broad range of instances of f -divergences,
provided that f ′′ satisfies the growth conditions outlined in
(14) and (15). Notably, these assumptions hold for many
commonly used f -divergences. For example, it can be verified
with N = L = 1 for KL divergence, N = L = 2 for χ2-
divergence, and with N = L = α for the Hellinger divergence
of order α. The following corollary, derived from Theorem 2,
explicitly identifies the exponential convergence rate for these
specific metrics. Furthermore, the one-to-one relationship be-
tween Rényi divergence and Hellinger divergence allows us
to directly extend the convergence rate derived for Hellinger
divergence to Rényi divergence.

Corollary 3. Let Xk ∼ µk denote the output of the kth

iteration of P-LMC. Let r = D(ηM+1)√
2η

and s = e
r2

2 +r. We
have the following upper bounds:
• KL divergence: For k ≥ 2, we have

KL(µk∥πη)

≤
[
r2

2
+ r + 1− 1

s

][
Q
(−r
2

)]k
+
r
(
1 + er

2)
k − 1

( 1

2π

) k
2 ,

• χ2-divergence: For k ≥ 2, we have

χ2(µk∥πη)

≤
[
2s− 1− 1

s2

][
Q
(−r
2

)]k
+

2r
(
1 + er

2)
k − 1

( 1

2π

) k
2 ,

• Hellinger divergence: For k ≥ ⌈α⌉ and α ∈ (1,∞), we
have

Hα(µk∥πη) ≤
[
αsα−1 − 1

α− 1
− 1

sα

][
Q
(−r
2

)]k
+

(
1 + e⌈α−1⌉r2)
(k − 1)

(
αr

)−1

( 1

2π

) k
2 ,

• Rényi divergence: For k ≥ ⌈α⌉ and α ∈ (1,∞), we have

Dα(µk∥πη) ≤ 1

α− 1
log

[
αr

(
1 + e⌈α−1⌉r2)

(k − 1)(α− 1)−1

( 1

2π

) k
2

+
[
αsα−1 − 1− α− 1

sα

][
Q
(−r
2

)]k
+ 1

]
.

IV. MIXING TIME FOR CONVEX FUNCTIONS

In this section, we demonstrate that the convergence rate
established in Theorem 1 improves when the potential is
convex. This improvement follows from a well-known result
in convex optimization (see, e.g., [38]): If g is M -smooth and
convex, then w 7→ w−η∇g(w) is contractive for η ≤ 2/M . In
our context, this implies that the update rule ψB is contractive
for smooth and convex potentials (refer to the longer version
for a formal proof). This contractivity further ensures that
dia(SB) ≤ D, where SB := ψB(K), which provides a tighter
bound compared to (9).

The following theorem establishes an improved convergence
rate specifically tailored for convex potentials. For ease of

comparison with [15], we present this result in terms of total
variation distance.

Theorem 3. Consider the potentials are convex and η ≤ 2
M .

Let Xk ∼ µk denote the output of the kth iteration of P-LMC.
Then, we have

TV(µk, π
η) ≤

[
1− 2Q

(
D

2
√
2η

)]k
. (19)

Moreover, for 0 < ε < 1, the TV-mixing time satisfies

Tmix,TV (ε) ≤ log ε

log
[
1− 2Q

(
D

2
√
2η

)] . (20)

Proof sketch: It can be verified that dia(SB) ≤ D.
Following the steps as those in the proof of Theorem 2, with
the new estimate for the diameter of SB , we obtain

TV(µk, π
η) ≤

[
Q

(
−D
2
√
2η

)
−Q

(
D

2
√
2η

)]k
Since Q(x) = 1−Q(−x), we derive the final result.

It is worth noting that a tight convergence bound for the
mixing time in the convex setting, recently established by
Altschuler and Talwar [15], is of order D2

η . While our result
does not achieve this bound, it represents an improvement over
the existing convergence analyses in non-convex settings.

V. DISCUSSION

This work establishes exponential convergence guarantees
for P-LMC, a constrained version of LMC, across several f -
divergences. The sole assumption is that the potentials are
smooth, allowing them to be either convex or non-convex.

Our main results are based on the observation that the
update rule of P-LMC can be modeled as a composition
of three Markov kernels. For two different initializations of
P-LMC, each kernel either acts as a contraction or, based
on the DPI, does not increase the divergence. Consequently,
the combination of these three kernels forms a contraction
for each iteration of P-LMC. If one of the initializations
is sampled from πη , this contraction implies that the f -
divergence between the output distribution of P-LMC and πη

decays exponentially.
This observation may hold for other sampling algorithms.

Thus, as a natural future direction, we aim to extend our
result to other such sampling algorithms, e.g., the Metropolis-
Adjusted Langevin Algorithm (MALA) [39, 40].
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APPENDIX A
PROOF OF THEOREM 1

We begin by stating the following proposition which will
be required subsequently.

Proposition 2. Let SB := ψB(K) for M -smooth potential
functions. Then, we have

dia(SB) ≤ D(ηM + 1),

where D = dia(K).

Proof of Proposition 2: We have

dia(SB)

= sup
w1,w2∈K

||ψB(w2)− ψB(w1)||

≤ sup
w1∈K
w2∈K

∥∥∥(w2 − w1)
∥∥∥+

η

b

∑
i∈B

sup
w1∈K
w2∈K

∥∥∥∇ui(w1)−∇ui(w2)
∥∥∥

≤ D +
η

b

∑
i∈B

sup
w1,w2∈K

∥∥∥M × (w1 − w2)
∥∥∥

= D(ηM + 1).

The first step follows from substituting the definition of the
function ψB and using the triangle inequality, and the next
step relies on the M -smoothness of the potentials.

Using Proposition 2, we compute Eγ(µk+1∥πη) after k+1
iterations, where the initial inputs are sampled from πη and
µ0:

Eγ(µk+1∥πη)

= Eγ

((
ΠK ◦ K

√
2η

G ◦Ψk

)
µk∥

(
ΠK ◦ K

√
2η

G ◦Ψk

)
πη

)
≤ Eγ

((
K
√
2η

G ◦Ψk

)
µk∥

(
K
√
2η

G ◦Ψk

)
πη

)
≤ 1(

n
b

) ∑
B⊂[n]:
|B|=b

Eγ

((
K
√
2η

G ◦ ψB

)
µk∥

(
K
√
2η

G ◦ ψB

)
πη

)

≤ 1(
n
b

) ∑
B⊂[n]:
|B|=b

θγ

(dia(SB)√
2η

)
Eγ

(
ψB(µk)∥ψB(π

η)
)

≤ 1(
n
b

) ∑
B⊂[n]:
|B|=b

θγ

(dia(SB)√
2η

)
Eγ

(
µk∥πη

)
(21)

≤ 1(
n
b

) ∑
B⊂[n]:
|B|=b

θγ

(D(ηM + 1)√
2η

)
Eγ

(
µk∥πη

)

= θγ

(D(ηM + 1)√
2η

)
Eγ

(
µk∥πη

)
The first step follows directly from the definition of the P-LMC
Markov kernel in (6) and the fact that πη is the stationary
distribution of this Markov kernel. Next, we apply DPI,
followed by utilizing the convexity of (P,Q) 7→ Eγ(P∥Q).
The next step leverages Proposition 1. Again, we apply DPI
and Proposition 2. The last step holds because the terms are
identical, so we can multiply them by their count.

By applying the same operations on Eγ (µk∥πη) over k
iterations, we obtain the following result:

Eγ(µk+1∥πη) ≤

[
θγ

(D(ηM + 1)√
2η

)](k+1)

Eγ

(
µ0∥πη

)
.

Finally, since Eγ-divergence is trivially bounded by 1, we
obtain the desired result.

We now turn to proving the second part of the Theorem
which is to find an upper bound for the mixing time Tmix,Eγ (ε)
under Eγ-divergence (Assuming ε < 1. If ε ≥ 1 we get the
trivial bound of Tmix ≥ 0). Specifically, we aim to determine
k such that Eγ(µk∥πη) ≤ ε, which holds when

[
θγ

(D(ηM + 1)√
2η

)]T

≤ ε

Taking the logarithm of both sides, we have

k ≥ log ε

log

(
θγ

(
D(ηM+1)√

2η

))
As a result

Tmix,Eγ
(ε) ≤ log ε

log

(
θγ

(
D(ηM+1)√

2η

))

APPENDIX B
PROOF OF THEOREM 2

We set r = D(ηM+1)√
2η

and s = e
r2

2 +r. By substituting our
upper bound from Theorem 1 into (13), we obtain:

Df (µk∥πη) ≤
∫ ∞

1

(
f ′′(γ) + γ−3f ′′(γ−1)

)[
θγ

(
r
)]k

dγ

To simplify the analysis and computation, the previous
integral is split as follows:

=

∫ s

1

[
f ′′(γ) + γ−3f ′′(γ−1)

] [
θγ

(
r
)]k

dγ︸ ︷︷ ︸
A

+

∫ ∞

s

f ′′(γ)

[
θγ

(
r
)]k

dγ︸ ︷︷ ︸
B

+

∫ ∞

s

γ−3f ′′(γ−1)

[
θγ

(
r
)]k

dγ︸ ︷︷ ︸
C

For term A, after ignoring the second term in θγ(r), we
observe that Q

(
log γ
r − r

2

)
is a monotonically decreasing



function of γ. Therefore, for 1 ≤ γ ≤ s, it attains its maximum
at γ∗ = 1. Consequently, we have:

A =

∫ s

1

[
f ′′(γ) + γ−3f ′′(γ−1)

] [
θγ

(
r
)]k

dγ

≤
∫ s

1

[
f ′′(γ) + γ−3f ′′(γ−1)

] [
Q
( log γ

r
− r

2

)]k
dγ

≤
∫ s

1

[
f ′′(γ) + γ−3f ′′(γ−1)

] [
Q
(−r

2

)]k
dγ

=
[
Q
(−r
2

)]k ∫ s

1

[
f ′′(γ) + γ−3f ′′(γ−1)

]
dγ

=
[
Q
(−r
2

)]k [
f ′(s)− f ′(1) +

∫ s

1

γ−3f ′′(γ−1)dγ

]
=

[
Q
(−r
2

)]k [
f ′(s)− f ′(1) +

∫ 1

s−1

tf ′′(t)dt

]
=

[
Q
(−r
2

)]k [
f ′(s)− f ′(1) + tf ′(t)

∣∣∣1
1
s

−
∫ 1

s−1

f ′(t)dt

]
=

[
Q
(−r
2

)]k [
f ′(s)− s−1f ′(s−1)− f(1) + f(s−1)

]
=

[
Q
(−r
2

)]k [
f ′(s)− s−1f ′(s−1) + f(s−1)

]
As mentioned earlier, the first step involves ignoring the

second term in θγ(r), followed by upper bounding the Q-
function by its maximum. Assuming that f ′′ is continuous
allows us to compute the integral for the first term. Then, by
applying integration by substitution (t = γ−1) and integration
by parts in the next two steps, we derive the bound. The final
equality holds because f(1) = 0 for f -divergences.

For term B, we apply the following inequality: Q(x) < p(x)
x

for x > 0, where p(x) is the probability density function of
the normal distribution. Therefore, we have:

B =

∫ ∞

s

f ′′(γ)

[
θγ

(
r
)]k

dγ

≤
∫ ∞

s

f ′′(γ)

[
Q
( log γ
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2
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dγ

≤
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2
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log γ
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2
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dγ

=
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[p( log γ
r − r

2
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log γ
r − r

2
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dγ

≤ N
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2
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log γ
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2
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= N(2π)
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2
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2 +r

eKt
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dt
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x2

2

x

]k

dx

= Nr(2π)
−k
2

∫ ∞

1

[
e

−(x−r)2
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2
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1

1

xK

[
1

x
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= NreKr2(2π)
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2

(
1
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)
We began by omitting the second term in θγ(r) for sim-

plicity in the initial analysis. Next, we applied the inequal-
ity introduced earlier for the Q function. The assumption
∀x ≥ s : x1−Kf ′′(x) ≤ N enabled the derivation of
the subsequent term. By performing two substitutions during
integration (t = log γ and x = t

r−
r
2 ), we further simplified the

expression. Finally, we upper-bounded all terms of the form
e−x2

by their maximum value of one, i.e., ∀x : e−x2 ≤ 1.
This sequence of steps leads to the final result.

The first steps for C are similar to those for B. We have:

C =

∫ ∞

s

γ−3f ′′(γ−1)

[
θγ

(
r
)]k

dγ

≤
∫ ∞

s
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Q
( log γ

r
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2

)]k
dγ

≤
∫ ∞
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[p( log γ
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2
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log γ
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dγ
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log γ
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)
Here, we once again ignored the last term and apply the
inequality for the Q function (∀x > 0 : Q(x) < p(x)

x ). Next,
we used the assumption ∀x ≥ s : x−2f ′′(x−1) ≤ L. By
performing two integrations by substitution (t = log γ and
x = t

r − r
2 ) and subsequently upper-bounding e−2rx by one

for x > 1, we derived the upper bound for the term C.
The final step is to combine the upper bounds for A, B,

and C. This gives us:

Df (µk∥πη) ≤
r
(
L+NeKr2

)
k − 1

(2π)
−k
2

+

[
f ′(s)− f ′(s−1)

s
+ f(s−1)

][
Q
(−r
2

)]k
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PROOF OF THEOREM 3

We start by modifying Proposition 2 for the convex case:

Proposition 3. Let SB := ψB(K) for M -smooth and convex
potential functions. Then, for η ≤ 2

M we have

dia(SB) ≤ D,

where D = dia(K).

Proof of Proposition 3: First, we begin by showing that
when η ≤ 2

M , the convexity and smoothness assumptions on
the potential imply the 1-Lipschitzness of ψB(w):∥∥∥ψB(w2)− ψB(w1)

∥∥∥2
=
∥∥∥w2 −

1

b

∑
i∈B

η∇ui(w2)− w1 +
1

b

∑
i∈B

η∇ui(w1)
∥∥∥2

=
∥∥∥w2 − w1

∥∥∥2 + η2

b2

∥∥∥∑
i∈B

(
∇ui(w2)−∇ui(w1)

)∥∥∥2
− 2η

b

〈∑
i∈B

(
∇ui(w2)−∇ui(w1)

)
, w2 − w1

〉
All the ui functions are convex and M -smooth, so the

function uB(w) =
∑

i∈B ui(w) is also convex and bM -
smooth, where b = |B|. Moreover, using the fact that in
the convex function uB , bM -smoothness is equivalent to co-
coercivity of ∇uB , we can write:∥∥∥ψB(w2)− ψB(w1)

∥∥∥2
≤
∥∥∥w2 − w1

∥∥∥2 + η2

b2

∥∥∥∑
i∈B

(
∇ui(w2)−∇ui(w1)

)∥∥∥2
− 2η

b2M

∥∥∥∑
i∈B

(
∇ui(w2)−∇ui(w1)

)∥∥∥2
≤
∥∥∥w2 − w1

∥∥∥2+ η

b2
(η − 2

M
)
∥∥∥∑

i∈B

∇ui(w2)−∇ui(w1)
∥∥∥2

Now if η ≤ 2
M holds, we have:∥∥∥ψB(w2)− ψB(w1)

∥∥∥2 ≤
∥∥∥w2 − w1

∥∥∥2
And therefore, the ψB(w) function is 1-Lipschitz. As a result:

dia(SB) = sup
w1,w2∈K

||ψB(w2)− ψB(w1)|| = D

Having Proposition 3, we revise the upper bound for TV
distance and mixing time for P-LMC. A straightforward ma-
nipulation of (21) leads to following bound for TV distance:

TV(µk, π
η) ≤

[
1− 2Q

( D

2
√
2η

)]k

.

This yields the following upper bound for mixing time:

Tmix,TV

(
ε
)
≤ log ε

log
[
1− 2Q

(
D

2
√
2η

)] .

APPENDIX D
OVERVIEW TABLE OF CONVERGENCE RESULTS

Theoretical analyses of algorithms related to LD can be
categorized into several subsections. In the continuous-time
setting, Bakry et al. [41] demonstrated that the Log-Sobolev
inequality (LSI) and the Poincaré inequality (PI) imply ex-
ponential convergence in KL divergence and χ2 divergence,
respectively. The convergence of LD under other metrics and
assumptions has been explored in works such as [2, 6, 32].

In the discrete-time setting, LMC and P-LMC serve as
cornerstones of sampling methods due to their simplicity and
scalability. The first attempts at providing a theoretical analysis
for LMC were made by Roberts and Tweedie [42]. Recent
work on LMC focuses on improving theoretical understanding
by imposing structural assumptions on the potentials. Convex-
ity, as one of the earliest and most influential assumptions,
provides a clear framework for analyzing its convergence.

a) Convex LMC: Under smoothness and strong convexity
of the potential, Dalalyan [14] showed that LMC converges
to an ε-neighborhood of π in TV distance within Õ(d3ε−2)
iterations, later improved in [43, 44]. It was broaden to
KL divergence in [4]. Having smoothness, strong convexity
relaxed to convexity in [7, 45]. The analysis were extended
to cases where the potential is non-convex within a ball
and strongly convex outside it by [9, 46–49]. On a different
approach, Liang et al. [50] showed that the initial and current
output distributions become independent exponentially fast
when potential is convex and smooth.

b) Non-convex LMC: In the unconstrained non-convex
setting, the literature has expanded both the scope of met-
rics, covering 1-Wasserstein distance [26], 2-Wasserstein dis-
tance [27], KL divergence [2], and Fisher information [28],
as well as relaxed assumptions on potential functions, in-
cluding α-mixture weak smoothness [51], LSI [29], PI [2],
the Latała–Oleszkiewicz (LO) inequality [6], Modified Log-
Sobolev Inequality (M-LSI) [31], and weak Poincaré inequal-
ity (WPI) [32], enabling new results under less restrictive
assumptions on potentials.

It has been shown in [30] that, under the assumptions
of smoothness, the f -Sobolev inequality, and bounded η,
exponential convergence in the corresponding f -divergence
is achieved. Additionally, Cheng et al. [52] proposed condi-
tional convergence on a state space subset, showing that with
smoothness and local LSI, the probability mass is either small
or the LMC output is close π.

c) Convex P-LMC: In the constrained setting, there is
a relative scarcity of research. For the convex case, Bubeck
et al. [25] made a key contribution, demonstrating that under
Lipschitz continuity and smoothness assumptions, the iteration
complexity of P-LMC to achieve an ε-neighborhood of π
in TV distance is Õ(d12ε−12). Altschuler and Talwar [15]
characterize the mixing time of P-LMC to πη under convexity
and smoothness assumptions, showing that the mixing time in
TV distance is Θ

(
D2

η

)
. A detailed comparison is provided in

Section IV.



d) Non-convex P-LMC: Lamperski [33] analyzed the
convergence rate of the 1-Wasserstein distance between output
distribution of P-LMC and π. In their framework, the potential
function is assumed to take the form ν(Xk, Zk), where the
first argument (Xk) corresponds to the same variable as in
our setting, and the second argument (Zk) represents I.I.D.
external random variables.

The assumptions in [33] are: (i) The mean potential func-
tion, defined as ν̄(x) = EW [ν(x, z)], is M -smooth; (ii) For
each z, the gradient ∇xν(x, z) is ℓ-Lipschitz; (iii) For each
x ∈ Rd, the deviations ∇xν(x, Z) − ∇xν̄(x) are uniformly
sub-Gaussian. Specifically, there exists σ > 0 such that for all
α ∈ Rd, the following bound holds:

E
[
exp

(
α⊺

(
∇xν(x, Z)−∇xν̄(x)

))]
≤ eσ

2∥α∥2/2. (22)

Under these assumptions, Lamperski [33] proved that for
η ≤ 1

2 and constants {ci : i ∈ [3]}, this bound holds:

W1

(
L(XT ), πν̄

)
≤ c1(η log T )

1
4 + c2e

−ηc3T (23)

To compare our results with those in [33], we assume
that the second argument in [33] is drawn from a uniform
distribution, and we set the batch size in our setting to one.
Therefore, ui(x) corresponds to ν(x, zi) in [33] and satisfies
all the assumptions stated in [33].

When comparing our findings in Theorem 2 with (23), we
observe a key distinction in the rate of convergence. Our
result establishes exponential convergence in TV distance,
whereas [33] demonstrates logarithmic convergence in terms
of iterations under the 1-Wasserstein distance. This differ-
ence stems from the methodological approaches employed.
Specifically, Lamperski [33] achieved convergence to the π
by coupling the continuous-time P-LMC with the discrete-
time P-LMC. In contrast, our analysis relies exclusively on
the discretized version, eliminating the need for transitions
between continuous and discrete time, thereby resulting in a
sharper convergence bound.

TABLE II
OVERVIEW OF PAPERS PRESENTING CONVERGENCE RESULTS FOR

LANGEVIN DYNAMICS AND RELATED ALGORITHMS.

Ref Algo Convex Other Assumptions Metric Type
[41] LD No PI χ2 to target
[41] LD No LSI KL to target
[2] LD No LSI Rényi to target
[6] LD No Latała–Oleszkiewicz

inequality
Rényi to target

[6] LD No Modified LSI Rényi to target
[32] LD No Weak PI, s-Hölder Rényi to target
[14] LMC Strong M -smooth TV to target
[44] LMC Strong M -smooth W2 to target
[43] LMC Strong M -smooth W2 to target
[4] LMC Strong M -smooth KL to target

[46] LMC
Strong
outside
a ball

M -smooth W1 to target

[48] LMC
Strong
outside
a ball

M -smooth TV to target

[9] LMC
Strong
outside
a ball

M -smooth W1 to biased

[7] LMC Yes M -smooth KL to target
[45] LMC Yes M -smooth Wq to target
[26] LMC No LSI, M -smooth,

dissipative
W2 to target

[27] LMC No M -smooth, dissipative W1 to target
[2] LMC No LSI, M -smooth KL to target
[2] LMC No LSI, M -smooth Rényi to biased
[2] LMC No PI, M -smooth Rényi to biased

[51] LMC No LSI, α-mix weakly
smooth

KL to target

[29] LMC No LSI, M -smooth,
dissipative

KL to target

[29] LMC No LSI, M -smooth,
dissipative

Rényi to target

[31] LMC No Modified LSI, s-Hölder,
dissipative

KL to target

[6] LMC No Latała–Oleszkiewicz
inequality, s-Hölder

Rényi to target

[6] LMC No Modified LSI, s-Hölder Rényi to target
[32] LMC No Weak PI, s-Hölder Rényi to target

[30] LMC No M -smooth, f -Sobolev
Inequality

f -
divergence to biased

[28] Average-
LMC No M -smooth Fisher in-

formation to target

[33] P-LMC No M -smooth, Uniform
sub-Gaussian gradients

W1 to target

[25] P-LMC Yes M -smooth, Lipschitz TV to target
[15] P-LMC Yes M -smooth TV to biased

Ours P-LMC No M -smooth f -
divergences to biased
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